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Abstract

A numerical solution of the transient free convection MHD flow of an incompressible viscous fluid past a semi-

infinite inclined plate with variable surface heat and mass flux is presented here. The non-dimensional governing

equations of the flow are unsteady, coupled and non-linear integro partial differential equations. The governing

equations are solved by an efficient, more accurate and unconditionally stable implicit finite difference scheme. Velocity,

temperature and concentration of the flow have been presented for various parameters such as Prandtl number,

Schmidt number, the buoyancy ratio parameter, Grashof number, inclination angle / and the magnetic parameter. The

local and average skin friction, Nusselt number and Sherwood number are also presented graphically.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Natural convection is frequently encountered in our

environment and engineering devices. Free convection

flow is caused by the temperature difference and also the

flow is affected by the difference in concentration of

material constitution. Quite often one can observe that

both heat and mass transfer occur simultaneously in free

convection. This study of flow phenomena has a wide

range of applications in the field of science and tech-

nology.

Gebhart and Pera [1] observed the steady state nat-

ural convection on a vertical plate with variable surface

temperature and variable mass diffusion. Using simi-

larity variables they solved the boundary layer equa-
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tions. Callahan and Marner [2] solved the problem of

transient free convection with mass transfer on an iso-

thermal vertical plate by using an explicit finite differ-

ence scheme. Soundalgekar and Ganesan [3] have solved

the problem for transient free convection with mass

transfer on a vertical plate with constant heat flux by

using an implicit finite difference scheme. Ekambavan-

nan and Ganesan [4] studied the problem of transient

natural convection flows over an inclined plate with

variable surface temperature and mass diffusion. Gane-

san and Palani [5] have analysed numerically for tran-

sient free convection flow past a semi-infinite inclined

plate with variable surface heat and mass flux.

The study of magnetohydrodynamics plays an

important role in agriculture, engineering and petroleum

industries. The problem of free convection under the

influence of a magnetic field has attracted the interest

of many researchers in view of its applications in

geophysics and astrophysics. The problem under con-

sideration has important applications in the study

of geophysical formulations; in the explorations and
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Nomenclature

a constant

b constant

B0 magnetic field strength

C0 species concentration

C dimensionless species concentration

D coefficient of diffusion in the mixture

Gr thermal Grashof number

Gc mass Grashof number

g acceleration due to gravity

k thermal conductivity

M magnetic parameter

m exponent in the power law variation of the

mass flux

N combined buoyancy ratio parameter

Nu dimensionless average Nusselt number

NuX dimensionless local Nusselt number

n exponent in power law variation of the heat

flux

Pr Prandtl number

Sc Schmidt number

Sh dimensionless average Sherwood number

ShX dimensionless local Sherwood number

T 0 temperature

T dimensionless temperature

t0 time

t dimensionless time

u, v velocity components in x-, y-directions,
respectively

U , V dimensionless velocity components in X -, Y -
directions, respectively

x spatial coordinate along the plate

X dimensionless spatial coordinate

y spatial coordinate along upward normal to

the plate

Y dimensionless spatial coordinate along up-

ward normal to the plate

Greek symbols

a thermal diffusivity

b volumetric coefficient of thermal expansion

b� volumetric coefficient of expansion with

concentration

/ angle of inclination of the plate with the

horizontal

r electrical conductivity

m kinematic viscosity

q density

sX dimensionless local skin friction

�s dimensionless average skin friction

Subscripts

i designates grid point along the X -direction
j designates grid point along the Y -direction
w conditions on the wall

1 free stream condition

Superscript

k time step level
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thermal recovery of oil; and in the underground nuclear

waste storage sites. Magnetohydrodynamics has its own

practical applications too. For instance, it may be used

to deal with problems such as cooling of nuclear reactors

by liquid sodium and induction flow meter, which de-

pends on the potential difference in the fluid in the

direction perpendicular to the motion and to the mag-

netic field.

Soundalgekar et al. [6] analysed the problem of free

convection effects on Stokes problem for a vertical plate

under the action of transversely applied magnetic field.

Sacheti et al. [7] obtained an exact solution for unsteady

magnetohydrodynamics free convection flow on an

impulsively started vertical plate with constant heat flux.

Shanker and Kishan [8] discussed the effect of mass

transfer on the MHD flow past an impulsively started

vertical plate with variable temperature or constant heat

flux. Elbashbeshy [9] studied heat and mass transfer

along a vertical plate under the combined buoyancy ef-

fects of thermal and species diffusion, in the presence of

the magnetic field. Helmy [10] presented an unsteady

two-dimensional laminar free convection flow of an
incompressible, viscous electrically conducting (Newto-

nian or polar) fluid through a porous medium bounded

by an infinite vertical plane surface of constant tem-

perature. Takhar et al. [11] developed to study the un-

steady mixed convection flow over a vertical cone

rotating in an ambient fluid with a time-dependent

angular velocity in the presence of a magnetic field. The

coupled non-linear partial differential equations gov-

erning the flow have been solved numerically using an

implicit finite-difference scheme. Ganesan and Palani

[12] studied the effects of the MHD on the two-dimen-

sional free convective flow of a viscous incompressible

fluid past a semi-infinite isothermal vertical plate. The

dimensionless governing equations are unsteady, two-

dimensional, coupled and non-linear are solved numer-

ically using an implicit finite difference scheme.

In recent years, the effects of the transverse magnetic

field on the flow of an incompressible, viscous electri-

cally conducting fluid have also been studied extensively

by many research workers. However, unsteady natural

convection flow over an inclined plate with MHD has

not been given any attention in the literature. Hence
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now we propose to study the problem of unsteady nat-

ural convection flow of a viscous incompressible elec-

trically conducting fluid past an inclined plate with

variable heat and mass flux, under the influence of

magnetic field.
2. Mathematical formulation

A problem of two-dimensional, unsteady, laminar

free convection flow past a semi-infinite inclined plate of

a viscous incompressible electrically conducting fluid

with variable surface heat and mass flux under the

influence of transversely applied magnetic field is for-

mulated mathematically in this section. It is assumed

that the concentration C0 of the diffusing species in the

binary mixture is very small in comparison to other

chemical species, which are present. This leads to the

assumption that the Soret and Dufor effects are negli-

gible. It is also assumed that the effect of viscous dissi-

pation is negligible in the energy equation and there is

no chemical reaction between the fluid and the diffusing

species. A uniformly transverse magnetic field is applied

in the direction of flow. It is further assumed that the

interaction of the induced magnetic field with the flow is

considered to be negligible compared to the interaction

of the applied magnetic field with the flow.

The angle of inclination of the plate with the hori-

zontal is assumed to be /. The x-axis is measured along

the plate and y-axis is taken along upward normal to the

plate. Initially, it is assumed that the plate and the fluid

are of the same temperature and concentration. The heat

and mass is supplied from the plate to the fluid at a rate

of qwðxÞ ¼ axn and q�wðxÞ ¼ bxm, respectively, and both

are maintained at the same level for all time t0 > 0. Then

under these assumptions, the governing boundary layer

equations of mass, momentum, energy and species

concentration for free convection flows with Bous-

sinesq’s approximation are as follows:
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The initial and boundary conditions are

t0 6 0 : u ¼ 0; v ¼ 0; T 0 ¼ T 0
1;C0 ¼ C0

1
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k
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1 as y ! 1

ð5Þ

where qwðxÞ ¼ axn, q�wðxÞ ¼ bxm.
Introducing the following non-dimensional quanti-

ties

X ¼ x
L
; Y ¼ y
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Eqs. (1)–(4) are reduced to the following non-

dimensional form.
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The corresponding initial and boundary conditions

in non-dimensional quantities are given by

t6 0 : U ¼ 0; V ¼ 0; T ¼ 0; C ¼ 0

t > 0 : U ¼ 0; V ¼ 0

oT
oY

¼ �Xn;
oC
oY

¼ �Xm at Y ¼ 0

U ¼ 0; T ¼ 0; C ¼ 0 at X ¼ 0

U ! 0; T ! 0; C ! 0 as Y ! 1

ð11Þ
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Local and average skin friction, Nusselt number and

Sherwood number. In non-dimensional quantities are

sX ¼ Gr3=4
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Y¼0

ð12Þ
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3. Numerical technique

The unsteady, non-linear, coupled and integro partial

differential equations (7)–(10) with the initial and

boundary conditions (11) are solved by employing a fi-

nite difference scheme of Crank–Nicolson type.

The finite-difference equation corresponding to Eqs.

(7)–(10) is given by
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The thermal condition at Y ¼ 0 in the finite difference

form is
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At Y ¼ 0 (i.e., j ¼ 0) Eq. (20) becomes
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After eliminating T kþ1
i;�1 þ T k

i;�1 from the Eqs. (22) and

(23) the following equation is obtained.
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The species condition at Y ¼ 0 in the finite difference

form is
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After eliminating Ckþ1
i;�1 þ Ck

i;�1 from the Eqs. (25) and

(26), the following equation is obtained
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Fig. 1. Transient velocity profiles at X ¼ 1:0 for different N , /
and M (�––steady state).
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Here, the subscript i-designates the grid point along

the X -direction, j-along the Y -direction and the super-

script k along the t-direction. During any one-time step,

the coefficients Uk
i;j and V k

i;j appearing in the difference

equations are treated as constants. The values of U , V , T
and C are known at all grid points at time t ¼ 0 from the

initial conditions. The computations of U , V , T and C at

time level ðk þ 1Þ using the known values at previous

time level ðkÞ are done as follows:

Eqs. (21) and (27) at every internal nodal point on a

particular i-level constitute a tri-diagonal system of

equations, which are solved by Thomas algorithm, de-

scribed by Carnahan et al. [13]. Thus, the values of C are

found at every nodal point on a particular i at ðk þ 1Þth
time level. Similarly the values of T are calculated from

Eqs. (20) and (24). Using the values of C and T at

ðk þ 1Þth time level in the Eq. (19), the values of U at

ðk þ 1Þth time level are found in a similar manner.

Integrals in this equation are evaluated using Newton-

Cotes closed integration formula. Then the values of V
are calculated explicitly by using Eq. (18) at every nodal

point on a particular i-level. This process is repeated for

various i-levels. Thus the values of C, T , U and V are

known at all grid points in the rectangular region at

ðk þ 1Þth time level.

This process is repeated in time until steady state is

reached. The steady state solution is assumed to have

been reached, when the absolute differences between

values of U as well as temperature T and concentration

C at two consecutive time steps are less than 10�5 at all

grid points. Computations have been carried out for

different values of parameters.

The derivatives involved in Eqs. (12)–(17) are evalu-

ated using five-point approximation formula and then

the integrals are evaluated using Newton-Cotes closed

integration formula.

The region of integration is considered as a rectangle

with sides Xmaxð¼ 1:0Þ and Ymaxð¼ 24:0Þ where Ymax

corresponds to Y ¼ 1 which lies very well outside the

momentum, thermal and concentration boundary lay-

ers. After experimenting with a few sets of mesh sizes,

the mesh sizes are fixed as DX ¼ 0:05, DY ¼ 0:25 and

Dt ¼ 0:01. In this case, the spatial mesh sizes are reduced

by 50% in one direction and then in both directions and

the results are compared. It is observed that, when the

mesh size is reduced by 50% in the Y -direction, the re-

sults differ in the fifth decimal place. When the mesh

sizes are reduced by 50% in X -direction or in the both

directions the results are comparable to three decimal

places. Hence these mesh sizes are considered to be

appropriate mesh sizes for calculations.
4. Results and discussion

In Fig. 1 transient velocity profiles are plotted for

different values of buoyancy ratio parameter N , incli-

nation angle / and magnetic field parameter M . An in-

crease in N leads to an increase in the velocity. This

indicates that the buoyancy force due to concentration

dominates in the region near the plate over thermal

buoyancy force on velocity. Time taken to reach the

steady state increases with the increasing value of the

magnetic field parameter M . From Fig. 1, we observe

that the magnetic parameter M has a retarding effect on

velocity. Velocity increases steadily and reaches steady

state after some time. Since the tangential component of

the buoyancy force increases with / and dominates in

the down stream, higher velocity is experienced

throughout the transient period as well as in the steady

state level for a system having larges angles of inclina-

tion.

For various Schmidt number and Prandtl number,

transient velocity profiles are plotted in Fig. 2. The

velocity of air ðPr ¼ 0:7Þ is always greater than velocity

of water ðPr ¼ 7:0Þ for same values of other parameters.

An increase in Sc leads to a fall in the velocity. Time

taken to reach the steady state increases as Pr or Sc
increases.

The effects of Grashof number, magnetic field

parameter M , exponent n and m on steady state velocity

are shown in Fig. 3. The velocity of air ðPr ¼ 0:7Þ de-

creases with increasing Grashof number. The increase in

the value of n and m reduces velocity on the surface up

to height of the plate X ¼ 1:0. Therefore velocity de-

creases with increasing value of n or m. It is observed

that the effect of m is more than that of n on velocity.
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Also it is observed that the system reaches the steady

state value quickly when n ¼ m.
To illustrate the effect of exponent n and magnetic

parameter M on the temperature, the transient temper-

ature distribution near the plate at X ¼ 1:0 is presented

in Fig. 4. Temperature increases with the increasing

value of the magnetic parameter M . It is observed that

the temperature decreases with increasing value of

exponent n. According to the result in the above figure

steady state value reaches early when n ¼ m in com-

parison with n < m. No temporal maximum is observed.

The profiles of steady state temperature for different

values of Pr, / and M are shown in Fig. 5. The effect of
Prandtl number is very important in the temperature

profiles. The thermal boundary layer thickness decreases

with increasing Prandtl number. It is observed that the

temperature decreases as the angle of inclination / in-

creases. Also it is observed that the system reaches

steady state early when / increases.

Transient concentration profiles are shown in Fig. 6

for different values of exponent m and M . Concentration

reduces with increasing value of m. The concentration

profile increases with the increasing value of magnetic

parameter M .

In Fig. 7, Steady state concentration profiles are

plotted for different values of Schmidt number, inclina-
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tion angle / and magnetic field parameter M . As ex-

pected concentration is lower for systems with a larger

Sc or /. More time is required to reach the steady state

value when Sc and M are large.

In Fig. 8, values of local shear stress is plotted for

various values of buoyancy ratio parameter N , / and M .

As the buoyancy ratio parameter N increases, local skin

friction increases. The local wall shear stress decreases as

M increases (or) / decreases. This is because of the fact

that the velocity gradient decreases near the plate as M
increases (or) / decreases which are shown in Fig. 1.

Local Nusselt number for different values of Pr, /
andM is shown in Fig. 9. It increases as X increases. The
local heat transfer stronger on Pr than on the other

parameters, since lower Pr gives thicker temperature

profiles, which agrees with Fig. 5. Large values of

Nusselt number are observed for higher value of Pr. It
decreases as M increases. Also, it is observed that local

Nusselt number increases by the increasing value of

inclination angle /.
Steady state local Sherwood number is shown in Fig.

10, for various values of Sc, / and M . The effect of Sc is
greater on the local Sherwood number than any other

parameter. It decreases as M increases. Also it is ob-

served that local Sherwood number decreases as / de-

creases.

Average values of skin friction, Nusselt number and

Sherwood numbers are shown in Figs. 11–13, respec-

tively. In Fig. 11, it is observed that average skin friction
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increases with time and become steady after some time.

Average skin friction gets reduced with the increas-

ing value of M . It decreases as / decreases. It is also

observed that average skin friction increases as N in-

creases.

In the initial time, higher values of average Nusselt

and Sherwood numbers are observed. They decrease

with time and become steady after some time. In Fig. 12,

Average Nusselt numbers are presented for various

values of / and M . It is observed that for short times,

the average Nusselt number is constant at each level for

various parameters. This shows that initially there is

only heat conduction. Average Nusselt number gets re-

duced by the increasing value of M . It decreases as /
decreases. In Fig. 13, Average Sherwood number is

shown graphically for various values of / and M .

Average Sherwood number decreases as M increases. It

decreases as / decreases.
5. Conclusion

A detailed numerical study has been carried out for

the MHD flow past a semi-infinite inclined plate with

variable surface heat flux and mass flux. The dimen-

sionless governing equations are solved by an implicit

finite-difference method of Crank–Nicolson type. Con-

clusions of the study are as follows.
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1. Time taken to reach the steady state increases with

the increasing value of the magnetic field parameter.

2. The magnetic field parameter has a retarding effect on

the velocity.

3. Temperature and Concentration increases with the

increasing value of the magnetic field parameter.

4. Velocity increases as the angle of inclination / in-

creases throughout the transient period and steady

state period.

5. In case of Sc, the velocity and concentration profiles

are decreasing as Sc increases.

6. Local and average Nusselt numbers are enhanced as

Pr increases.
7. Local skin friction decreases as the increasing value

of magnetic field parameter M .

8. The increasing value of magnetic field parameter re-

duces average Nusselt number. The same trend is also

noticed for average Sherwood number.
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